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ABSTRACT:
Recently, cluster analysis on f0 contours has become a popular method in phonetic research. Cluster analysis

provides an automated way of categorising f0 contours, which gives new insights into (phonological) categories of

intonation that vary across languages. As cluster analysis can be performed in many different ways, it is important to

understand the extent to which these analyses can capture human perception of f0. This study focuses on the way in

which f0 contours and differences among them are represented numerically, i.e., a crucial methodological choice

preceding cluster analysis. These representations are then compared to the way in which f0 contour differences are

perceived by human listeners from two different languages. To this end, four time-series contour representations

(equivalent rectangular bandwidth, standardisation, octave-median rescaling, first derivative) and three distance mea-

sures [Euclidean distance (L2 norm), Pearson correlation, and dynamic time warping) were tested. The perceived

differences were obtained from listeners of German and Papuan Malay, two typologically different languages.

Results show that computed contour differences reflect human perception moderately, with dynamic time warping

applied to the first derivative of the contour performing best, and showing minimal differences between the lan-

guages. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0019850
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I. INTRODUCTION

At the core of our understanding of prosody and

intonation lies the categorisation of their components.

Intonation has often been modelled by means of phonologi-

cal categories of pitch accents and boundary tones

(i.e., autosegmental-metrical models such as Tones and

Break Indices, ToBI; e.g., Silverman et al., 1992). The into-

nation of a considerable number of languages has been ana-

lysed using this model (e.g., Jun, 2005, 2014). A central

assumption of these analyses is that intonation contours are

composed of “building blocks” of high (H) and low (L)

tones that combine into f0 movements with specific shapes

(pitch accents and boundary tones), which themselves can

be combined into tunes that have a particular meaning

(Pierrehumbert and Hirschberg, 1990). In these approaches,

languages are assumed to exhibit an inventory of pitch

accents, comparable to the inventory of phonemes.

It is a challenge to understand how human speakers and

listeners handle the assumed tonal categories that underlie

the intonation of their language. It has been shown, for

example, that two different pitch accents do not always have

entirely different meanings and that one pitch accent might

have multiple meanings (e.g., F�ery and Stoel, 2006; Watson

et al., 2008). Yet, research has also shown that perceived

meaning distinctions between pitch accent categories can be

attributed to single phonetic cues (e.g., Ritter and Grice,

2015). To advance our understanding of how exactly

phonetic differences between f0 contours relate to underly-

ing phonological categories, research has adopted automatic

classification techniques such as cluster analysis.

Alternative approaches have used trained classifiers [e.g.,

Cole et al., 2022 or Tonal Center of Gravity (TCoG); e.g.,

Barnes et al., 2012; Albert et al., 2018] as ways to distin-

guish pitch accents.

Clustering has been applied in intonation research to

both the production and to the perception of f0 contours

since the seventies (e.g., Collier, 1975). As clustering tech-

niques find their applications in many fields of research,

there is a large variety of methodological choices to make in

order to tailor clustering to the specific data at hand (e.g.,

Kaufman and Rousseeuw, 1990). The cluster analyses that

have been used in intonation research, therefore, vary to a

large extent. We can distinguish two main aspects that affect

the performance of the cluster analysis; (1) the representa-

tion of the data that needs to be clustered and (2) the type of

cluster analysis. While the second aspect is planned for

future studies, this paper covers a selected number of ways

in which intonation contours can be represented before
applying cluster analysis. As further outlined in the following

sections, this aspect has not been covered in clustering

approaches to intonation, although it provides a crucial step to

understanding the extent to which cluster analysis is able to

resemble human perception and therefore the extent to which

cluster analysis is useful to explore intonation categories.

The next section provides a brief introduction to the

main aspects of cluster analysis relevant to this study (Sec.

I A). Thereafter, studies that applied cluster analysis to f0a)Electronic mail: ckaland@uni-koeln.de
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contours are discussed for the way they represented the con-

tours (Sec. I B) and how differences between the contours

have been calculated (Sec. I C). The final section summa-

rises the aims and research questions of this study (Sec. I E).

A. Cluster analysis

Cluster analysis is a classification technique that groups

numerically similar data(points). The desired outcome is a

certain number of groups (clusters) between which there is

dissimilarity and within which there is similarity. A key

problem in cluster analysis is finding the ideal number of

clusters. It is generally agreed upon that the optimum lies at

the number of clusters for which the between-cluster varia-

tion is maximal and the within-cluster variation is minimal.

The two most commonly applied clustering techniques that

are relevant for the current overview are k-means clustering

and hierarchical clustering. These types of clustering distin-

guish themselves in the way clusters are formed and in their

need for deciding on the number of clusters. K-means clus-

tering requires setting a number of clusters before clustering

is performed. The algorithm first assigns each observation to

a cluster (randomly) after which it updates the assignment

until the means of each cluster (centroids) do not change

anymore (convergence).

Hierarchical clustering can be performed without set-

ting the number of clusters. The clustering is performed

by iteratively merging (bottom-up; agglomerative) or

splitting (top-down; divisive) clusters. The initial or final

state of the clustering is when each observation forms a

cluster or when all observations are in one cluster

(depending on direction). The output of hierarchical clus-

tering is a tree-structure (dendrogram) from which any

number of clusters can be obtained by choosing a particu-

lar height in the tree. Hierarchical clustering requires a

criterion on the basis of which the clusters are formed

(linkage criterion). This criterion determines how the dis-

tance between sets of observations is calculated. Thus, for

expressing the distance between individual observations,

the distance measure is taken. However, between sets of

observations distances are expressed by a calculation over

all the distance measures in the sets. This can be done by

taking the maximum (complete linkage), minimum (sin-

gle linkage), (un)weighted average distance (UPGMA,

WPGMA), centroid (UPGMC), median (WPGMC), or

minimum increase in sum of squares (Ward). There are

more types of cluster analysis and more linkage criteria,

which will not be discussed here.

While the type of cluster analysis and choice of linkage

criterion affects how the clustering is performed, the way

the data is represented is equally crucial to the usefulness of

the clustering outcome. In the case of intonation contours,

two main representational aspects are covered in this study;

contour representation and distance measures. The next sec-

tion discusses how previous intonation research has dealt

with these aspects.

B. Cluster analysis in intonation research: Contour
representation

Intonation studies that applied cluster analysis (over-

view in Table I) can be roughly divided into two lines of

research, depending on whether mainly production or

mainly perception data were analysed. Note that some stud-

ies covered both, however, with primary focus on one of

them (e.g., Cole and Steffman, 2021). Perception research

performed cluster analysis on data obtained from tasks in

which listeners had to group utterances with similar sound-

ing intonation patterns (Collier, 1975; Collier, 1977; Od�e,

1989). Listeners could decide themselves how many groups

they formed. The distance measure was taken on the basis

of how often the intonation patterns were grouped together

(counts). The resulting distance matrix was then the input

for hierarchical clusterings with either single or complete

linkage as criteria. This group of studies is unique in that it

does not perform cluster analysis directly on acoustic mea-

sures, as was done in the production studies. The clustering

results were compared to acoustic properties of the contours

in the utterances. It was found, for example, that in Dutch a

timing continuum of a rising f0 movement over 12 items

was grouped by listeners into three clusters, corresponding

to three prototypical intonation contours in Dutch (Collier,

1975). As for Russian, the perceptual grouping of rising

contours was done based on their excursion size, posttonic

f0 level, and timing of the slope (Od�e, 1989).

Production studies that applied cluster analysis to intona-

tion can furthermore be divided into ones that represented f0
contours by (multiple) parameters derived from acoustic mea-

sures of the f0 contour and ones that represented intonation

contours by time-series measures of f0 (Table I). As for the

first, common parameters to describe an intonation contour

are (starting/mean) level, range, and slope (e.g., Demenko

and Wagner, 2006; Levow, 2006; Hirschberg and Rosenberg,

2007). More complex and integral approaches include

Parametrisation of Intonation Events (PaIntE) (M€ohler and

Conkie, 1998, used in Calhoun and Schweitzer, 2012) and a

model that combines a Contour-based, Parametric, and

Superpositional approach to intonation (CoPaSul; Reichel,

2011). As it is beyond the scope of this overview to go into

further detail concerning the models, only their contour repre-

sentation methods are discussed here. Both models represent

f0 contours using (a selection of) the previously mentioned

parameters and additional temporal measures (alignment,

domain) to reconstruct the original contour in a highly natu-

ralistic way. This was confirmed by acceptability/natural rat-

ings obtained in perception tests (Demenko and Wagner,

2006; Reichel, 2011).

Time-series f0 measures provide another way to repre-

sent the f0 contour. This method is adopted in the current

study and is essentially different from the parametric one as

the contour is represented by a vector of f0 measures in

chronological order. For example, a contour with a length of

one second can be represented by 20 values, taken each

50 ms throughout the contour, e.g., in Hertz with the
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measurement number in subscript: {120:701; 123:342;
127:943;…; 91:7820}. Time-series f0 measures overcome

the challenge of finding the acoustic parameters that under-

lie its shape. That is, time-series values form a direct input

to drawing the contour as measured acoustically and inher-

ently provide all the information that can be captured by

parameters. Studies have used normalized time-series f0
data to perform cluster analysis on. Normalization was done

to account for speaker differences such as gender and f0
range.

Some studies using time-series f0 data had a primary

interest in automatization, such as text-to-speech systems

(Klabbers and Van Santen, 2004) or data mining (Zhang,

2016). These studies both z-normalized the f0 values.

Results on American English (Klabbers and Van Santen,

2004) showed that a hierarchical cluster analysis assuming

six clusters provided the most informative assessment of the

variation of pitch accents in expressive speech taken from

reading children’s stories. It was also shown that clustering

time-series data can be computationally reduced by a net-

work analysis (Zhang, 2016). In such an analysis a cluster-

ing coefficient expresses how nodes in a network tend to

group (e.g., Watts and Strogatz, 1998). This approach was

applied previously to detect melodic patterns in Indian art

music (Gulati et al., 2016) and has so far only been applied

to intonation to test the classification accuracy of Mandarin

tones (Zhang, 2016). That study compared different repre-

sentations of the time-series values, such as f0 in Hertz,

Cent, and Bark, as well as the first derivative (D1, i.e.,

velocity approximation) of the f0 contour. In addition, f0
contour approximations based on intonation models were

tested, i.e., by polynomial functions (Hirst et al., 2000) and

by syllable-wise pitch target approximations (Prom-on

et al., 2009). Furthermore, symbolic aggregate approxima-

tions (SAX) of f0 contours were included. SAX representa-

tion transforms the contour into a string of letters for

computation reduction, where each letter corresponds to a

part of the contour in a certain range. The division in ranges

is based on equal probabilities for an f0 level to be in a cer-

tain range. Results showed that the highest classification

accuracy was achieved by the Hertz, Bark, and D1 represen-

tations of the contours (all above 90%), outperforming the

model-based and SAX representations.

Other studies that used time-series f0 data applied clus-

ter analysis to find evidence for phonological categories of

intonation. These either used k-means (Ra�skinis and

Kazlauskien _e, 2013; Cole and Steffman, 2021) or hierarchi-

cal clustering (Kaland, 2021a; Kaland et al., 2021b; Seeliger

and Kaland, 2022) on normalized f0 data. The normalization

was done using zero-centered semitone values (Ra�skinis

and Kazlauskien _e, 2013), scaled equivalent rectangular

bandwidth (ERB) values (Cole and Steffman, 2021), stand-

ardised values (Kaland, 2021a; Kaland et al., 2021b, using

the method in Rose, 1987), or octave-median (OMe) scaled

values (Seeliger and Kaland, 2022, using the method in De

Looze and Hirst, 2014). One of these studies (Cole and

Steffman, 2021) compared the clustering output with human

discrimination accuracy using eight American English

TABLE I. Studies that applied cluster analysis to intonation contours. Main aspects summarized: contour representation, f0 conversion, distance measure

(Eucl: Euclidean), cluster analysis (H, hierarchical (linkage criterion); K-M, k-means; K-L, k-lines; N, network analysis) and language.

Study Contour representation f0 conversion (scale) Distance measure Cluster analysis Language

Collier (1975) Perceptual Grouping NA grouping counts H (single/complete) Dutch

Collier (1977) Perceptual grouping NA grouping counts H (single/complete) Dutch, (British) English

Od�e (1989) Perceptual grouping NA grouping counts H (complete) Russian

Klabbers and

Van Santen (2004)

Time-series f0 None/single speaker (Hz) Pearson H (Ward) (American) English

Demenko and

Wagner (2006)

Acoustic parameters None/single speaker (Hz) NA K-M Polish

Levow (2006) Acoustic parameters Log-transformed,

z-normalized (NA)

NA K-L (spectral), K-M Mandarin,

American English

Hirschberg and

Rosenberg (2007)

Acoustic parameters z-normalized (NA) NA K-M American English

Reichel (2011) CoPaSul acoustic

parameters

Range-normalized (ST) Eucl. K-M German

Calhoun and

Schweitzer (2012)

PaIntE acoustic

parameters

Log-transformed,

standardised (Hz)

Eucl., Mahalanobis H (Ward), K-M American English

Ra�skinis and

Kazlauskien_e (2013)

Time-series f0 Log-transformed,

zero-centered (Hz)

DTW K-M Lithuanian

Zhang (2016) Time-series f0 l-normalized (Hz, Ct, Bark), D1 Eucl., DTW,

MINDIST

N/clustering coeff. Mandarin

Dockum (2017) PCA loadings (2) z-normalized (ERB) NA K-M Chindwin Khamti

Kaland (2021a) Time-series f0 Standardised (Hz) Eucl. H (complete) Papuan Malay,

Zhagawa

Cole and Steffman (2021) Time-series f0 Scaled (ERB) Eucl. K-M American English

Kaland et al. (2021b) Time-series f0 Standardised (Hz) Eucl. H (complete) Kera’a

Seeliger and Kaland (2022) Time-series f0 OMe scaled (Hz) Eucl. H (complete) German
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nuclear tunes (as proposed in Pierrehumbert, 1980). The

perception task was setup as an AX-discrimination task and

showed that listeners had difficulty distinguishing tune pairs

that were acoustically similar (as expressed by root-mean-

squared-error, RMSE, on the ERB values). Crucially, the

clustering indicated an optimum of five instead of eight dis-

tinct tunes, merging exactly those tunes that were acousti-

cally similar.

A somewhat different approach used the outcome of a

principal component analysis (PCA) as a representation of

the f0 contour used as lexical tone (Dockum, 2017). The

analysis was performed on word corpora from Chindwin

Khamti, spoken in northwestern Myanmar. The PCA was

first performed on measures of f0 and phonation in a time-

series fashion. The outcome showed that more than 95% of

the variance in the data was explained by the first two com-

ponents, corresponding to f0 level and slope respectively.

The two outcome values (one for each component) repre-

sented the f0 contour and were submitted to a k-means clus-

ter analysis. The clustering was able to reliably distinguish

three of the four tones reported for this language.

C. Cluster analysis in intonation research: Distance
measures

After choosing a contour representation, the next step

required before applying cluster analysis is deciding on the

way in which differences between contours are expressed,

i.e., the distance measure. There is much less variation in the

choice of distance measure in the studies that applied cluster-

ing to intonation compared to the choice of contour represen-

tation (Table I). Nevertheless, there are many distance

measures available (e.g., Mori et al., 2016, for an overview

of distance measures for time-series data). It is beyond the

scope to review all of these. This section is therefore confined

to three (common) distance measures that were used in previ-

ous intonation contour research; Euclidean distance, Pearson

correlation, and dynamic time warping. The grouping counts

taken from the perceptual evaluation of contours (Collier,

1975, 1977; Od�e, 1989) are left out here as the primary focus

is on the distance measure between contour representations

based on acoustic measures (production).

The most commonly applied distance measure is

Euclidean distance (Table I). However, Euclidean distance

does not meet a number of properties that is desired for

time-series distance measures, in particular, the need for

insensitivity to outliers and the recognition of similar shapes

among differences in scaling (Esling and Agon, 2012). It

has been shown that these disadvantages affect small data-

sets more than larger ones (Ding et al., 2008), although this

has not been tested for f0 contours. It is expected that the

scaling problem could at least partially be overcome by

expressing f0 on a scale that accounts for auditory percep-

tion of certain spectral characteristics (ST, ERB, Bark),

which would make Euclidean distance more suitable to

apply to f0 contours.

Scaling differences in the f0 domain can also be

accounted for by taking the Pearson correlation coefficient

(q) as a distance measure. Thus, two rise-fall f0 movements

that are produced in a different range (e.g., due to gender

differences) are recognized as similar by this measure.

Pearson correlation distance was applied to f0 contours for

this reason in one study (Klabbers and Van Santen, 2004). It

is important to note that not all correlation-based distance

measures are suitable for f0 contours. For example, the abso-

lute Pearson correlation coefficient, i.e., jqj, would analyse a

rising and a falling f0 with similar starting points and steep-

ness as highly similar. A Spearman rank correlation coeffi-

cient would lose the chronological order from the time-series

because measurements are ranked in its computation.

Scaling in the time-domain can also be accounted for.

This is useful to detect similarities between intonation

events that might have a different time-alignment, for exam-

ple, early and late peaks. A common method to do so is

dynamic time warping (DTW) and has been applied in two

studies (Ra�skinis and Kazlauskien _e, 2013; Zhang, 2016). It

was used in time-series of single f0 measurements per sylla-

ble over varying phrase lengths (Ra�skinis and Kazlauskien _e,

2013) and on an existing dataset of extracted Mandarin

tones represented by a fixed number of points (30; Gauthier

et al., 2007). Note that the desired effect of DTW is different

in these studies. That is, for varying phrase lengths similar

nuclear tunes might be revealed by the clustering when

using DTW, rather than when using other distance mea-

sures, which is useful for exploring intonational phonology

(Ra�skinis and Kazlauskien _e, 2013). However, for testing

different mining techniques, it is desired to study a well-

described phenomenon such as Mandarin tone as repre-

sented by time-normalized and equidistant f0 measures from

a “relatively clean dataset” (Zhang, 2016, p. 5). As (time-

)alignment differences can be meaningful in intonation

(e.g., Ladd, 2008), this might be a reason to not apply DTW.

The decision largely depends on the type of data and the

research question.

The other distance measures that were used in single

studies concern Mahalanobis distance (in Calhoun and

Schweitzer, 2012), which is scale-invariant (Mahalanobis,

1936) and computes faster than DTW in time-series

(Prekopcs�ak and Lemire, 2012). In addition, MINDIST (Lin

et al., 2003, as used in Zhang, 2016) was used as a distance

measure that is tailored to SAX representations and outper-

formed Euclidean distance on normalized f0 (Hz) data in

terms of clustering accuracy.

D. Typological differences in intonation

As can be seen from Table I, cluster analysis has been

applied to typologically different languages. Often, cluster

analysis was chosen to explore under-researched languages

(Ra�skinis and Kazlauskien _e, 2013; Dockum, 2017; Kaland,

2021a; Kaland et al., 2021b). For other languages, cluster

analysis provided a new perspective that could be compared

to existing work on that language (e.g., Klabbers and Van

Santen, 2004; Reichel, 2011; Calhoun and Schweitzer,

2012; Zhang, 2016; Cole and Steffman, 2021; Seeliger and
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Kaland, 2022). Given the varying ways in which cluster

analyses, in particular contour representations and distance

measures, were applied, it is challenging to understand the

effect of the chosen method on the outcomes. With a large

variation in prosody across languages (e.g., Jun, 2005, 2014)

it is important to assess at which stage in the cluster analyses

language differences are to be expected. Thus, to reveal

intonation patterns that are prototypical (i.e., nuclear) in a

certain language, these would be expected to show from dif-

ferent clusters. We do not know, however, whether contour

representation needs to be tailored to the language, given

that contrasts between two different prototypical contours

might be perceptually relevant in one language and not in

another. To assess this, perception research is needed across

languages and the outcomes need to be compared to the data

before clustering. In the current study, this is done by com-

paring Papuan Malay (PMY) with German (DEU), two

typologically different languages.

Papuan Malay is spoken in the Eastern Indonesian prov-

inces Papua and West-Papua. The language is rather under

researched, although its prosody has been studied in more

depth in recent years. Studies have investigated word-level

and phrase-level prosody. As for word-level prosody,

research indicates that this language has word stress

(Kaland, 2019, 2020, 2021b; Kaland et al., 2021a). As for

phrase-level prosody, it was found that Papuan Malay listen-

ers agreed more on where prosodic boundaries (phrase-final)

occurred than on where prosodic prominence (phrase-

medial) occurred (Riesberg et al., 2020). That study com-

pared those transcriptions to the ones by German listeners,

who showed a stronger agreement on the location of promi-

nences. These results are in line with the finding that in

Papuan Malay the largest f0 movements are found in pre-

final and final syllables in the phrase (Kaland and Baumann,

2020) and that these movements facilitate word recognition

(Kaland and Gordon, 2022). Focus marking has been studied

for semantic contrasts in Papuan Malay and Dutch noun

phrases (e.g., red banana vs blue banana; Kaland et al.,
2023). While these were typically marked with a pitch

accent in Dutch, they were not in Papuan Malay.

Irrespective of the contrastive focus, Papuan Malay speakers

always produced a rise on the pre-final syllable and a rise or

fall on the final syllable in the phrase. More research is

needed to understand phrase(-final) prosody in Papuan

Malay and in particular to what extent it is useful to distin-

guish pitch accents from boundary tones, as done by default

in autosegmental metrical models (e.g., Jun, 2005, 2014).

Thus, to date, no inventory of pitch accents and boundary

tones is established for this language.

German prosody has been well studied and detailed

transcriptions are available (e.g., Adriaens, 1991; Grice

et al., 2005). German has word level stress and uses phrase

prosody for a variety of highlighting and phrasing functions.

For example, clause-attachment, information structure (giv-

enness, focus), speech acts, as well as paralinguistic func-

tions such as signalling emotion (e.g., Grice and Baumann,

2007 for a general overview using German examples). The

intonational phonology of German (e.g., F�ery, 1993) is

based on an inventory of six pitch accents (L*, H*, L*þH,

LþH*, HþL*, and Hþ!H*) and eight boundary tones

(intonational phrase: L-%, H-%, L-H%, H-̂ H%; intermedi-

ate phrase: L-, H-,! H-; initial boundary tone: %H). An over-

view of how these combine into nuclear tunes is available

as online training material (Grice et al., 2022). In a percep-

tual evaluation of the categoric nature of German intonation

contours (i.e., acceptability ratings) it was concluded that a

gradient grammar would account better for the results than a

formal grammar (F�ery and Stoel, 2006), which nuanced the

mapping of form to function in German intonation.

E. Research aims

The studies that performed cluster analysis on f0 con-

tours differ widely in their combinations of contour repre-

sentation, distance measures and languages on which they

were applied (n.b. leaving aside the types of cluster analy-

sis). Although some studies explicitly compared representa-

tional methods (Zhang, 2016) or provided human perception

data to compare the clustering output to (Demenko and

Wagner, 2006; Reichel, 2011; Cole and Steffman, 2021), no

study has systematically compared multiple contour (differ-

ence) representations to human perception across languages.

Commonly, it has been taken for granted that perceptual

scale and/or a normalization would approximate human

pitch perception in speech. However, these f0 representa-

tions do not necessarily capture the way in which f0 contour

differences are perceived. These aspects crucially precede

the clustering, on which they have potentially a large effect.

Thus, the f0 representation in terms of scale and normaliza-

tion affects the calculation of distance measures, which in

turn affects the clustering output. The effects of the represen-

tational choices in contour clustering are compared to the

way human listeners perceive differences between f0 con-

tours in the current study. As the ultimate goal of the cluster

analysis is understanding the ways in which f0 movements

can be meaningfully (i.e., phonologically) categorised, this

study further compares the effect of native language on con-

tour perception. It remains to be seen whether choices in con-

tour representation for clustering depend on the language

under investigation, or whether these choices rather corre-

spond to more language-independent (psycho-)acoustic pro-

cesses. The two main research questions are formulated as

follows:

(RQ1) Which time-series contour representation, in terms

of f0 values and distance measures, does reflect human per-

ception best?

(RQ2) To what extent does the contour representation

depend on the (prosody of the) language under investigation?

To answer these research questions, the current study

compares the distance matrices obtained from all combina-

tions of f0 representations and distance measures in Table II

to distance matrices based on perceptual similarity judg-

ments by Papuan Malay and German listeners. The
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similarity judgments were obtained from all combinations

of nine carefully chosen contours. The investigation con-

cerns time-series f0 data only, as this method provides fine-

grained detail superseding parametric approaches. In order

to test the difference between the languages, the f0 contours

under investigation were naturally produced ones from

Papuan Malay and presented to listeners using acoustically

manipulated stimuli (Sec. II).

II. METHODOLOGY

This section describes the methodological choices made

in this study. The contours investigated here are taken from

a corpus of Papuan Malay recordings from speaker pairs

who put together pieces that form a tangram figure in a col-

laborative way (Riesberg and Himmelmann, 2012). The

recordings were unscripted, and are a representative and nat-

uralistic type of speech for this language. Transcriptions

were cross-checked with the help of native speakers.

A. Stimulus preparation

From the corpus of recordings (Riesberg and

Himmelmann, 2012) phrase-final words were selected. This

was done because previous studies found that phrase-final f0
movements are the largest in Papuan Malay (Kaland and

Baumann, 2020). The goal was to select a set of f0 contours

that showed a natural degree of variation. Previous studies

reported rise-fall contours as the most common f0 pattern in

Papuan Malay (Himmelmann and Kaufman, 2020). However,

the data showed that other patterns were frequent as well. For

this reason, three overall patterns were distinguished for the

selection of the stimulus material: (rise-)falling, level, and ris-

ing. Note that these are coarse categorisations, as variation

was found among falling contours in whether they were pre-

ceded by a small rise and among the rising contours in the

steepness of the rise. In the former case, the rise always had a

smaller range and shorter duration than the fall (i.e., the con-

tour was overall more falling than rising).

The phrase-final words were chosen from three speakers

(two females, S and T; one male, Y). These speakers were

chosen because the duration variation among the (rise-)fall-

ing, level, and rising contours were smaller compared to

other speakers (386 to 678 ms; see Table III). This was done

to minimize the degree of duration manipulation (described

in the next paragraph). For the same reason, only bisyllabic

words were considered. The final set consisted of nine

selected words (three speakers � three types of contours).

See Table III and Fig. 1 for details on the selected contours.

The selected words were prepared as stimuli for the per-

ception experiment in several stages of acoustic processing

and manipulation using Praat (Boersma and Weenink,

2022). First, their f0 contour was interpolated and smoothed.

The resulting contour was used as input to generate a

“hummed” version of the word. This step preserves the pros-

ody (f0, duration, and intensity) while the individual seg-

ments become inaudible. This was done to avoid any effect

of the originally produced word. To further ensure that from

the prosodic cues only f0 differed between the stimuli, inten-

sity and duration were both normalized. For intensity, this

was done by flattening the sound pressure level to a constant

of 70 dB throughout the stimulus. For duration, the stimuli

were time-normalized such that they all lasted exactly 500 ms

(without changing pitch). Although the naturalness of the

stimuli was therefore degraded to a certain extent, any per-

ceptual effect can be attributed to f0 only, which exactly fol-

lowed the naturally produced contour (Fig. 1).

B. Experimental design and procedure

Similarity judgments were elicited on a five-point scale

in a perception experiment that presented the stimuli in pair-

wise fashion. The nine stimuli were combined into 45 pairs,

such that each of the nine stimuli was combined with all

others and with itself. The pairs in which both stimuli were

identical were included to assess participants’ performance

(see the following) and excluded from the similarity analy-

sis. The resulting similarity matrix of the participants’ judg-

ments is based on the pairs in which the stimuli were not

identical (N¼ 36), as provided in the Appendix.

The experiment was designed using PsyToolkit (Stoet,

2010, 2017), which allows for online participation and col-

lection of results. The experiment was run through a web

browser. For each stimulus pair a screen was generated dis-

playing (from top to bottom) a percentage counter showing

task progress, the phrase “The word melodies are…,” two

play buttons, a five-point scale with the words “identical”

and “different” on the left and right side of the scale respec-

tively, and a button to proceed to the next stimulus (Fig. 2).

To ensure that participants followed the intended procedure,

the scale was only displayed after they had clicked on (and

listened to) both stimuli and the proceed button was only

displayed after they had made a judgment on the scale. The

TABLE II. Overview of f0 representations and distance measures tested in

this study.

f0 representation Distance measure

Unconverted (ERB) Euclidean

Standardised (Hz) � Pearson

OMe rescaled (Hz) DTW

First derivative (ERB)

TABLE III. Properties of the nine selected contours.

Speaker # Contour Word Duration (ms)

S 1: (rise-)fall prahu (boat) 530

S 2: level ekor (tail) 502

S 3: rise kecil (small) 523

T 1: (rise-)fall beda (different) 396

T 2: level dengan (with) 475

T 3: rise besar (big) 678

Y 1: fall besar (big) 589

Y 2: level bagyan (part) 483

Y 3: rise baru (only) 386
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stimulus pairs were presented in random order, different for

each participant. The position of the two play buttons corre-

sponded to the two members of a stimulus pair in random fash-

ion (either A:left–B:right or A:right–B:left). This was done to

counterbalance any potential presentational bias. Participants

could listen to the stimuli as much as needed and change their

judgment until they had clicked the proceed button. After click-

ing the proceed button their final judgment was recorded and

the next stimulus pair was shown.

Participants were instructed that they would listen to

pairs of words that were made unrecognizable and that their

task was to judge how similar/different the melodies of the

words in the pair are. They were told that the stimuli were

taken from different speakers and that speaker differences

were still audible in the stimuli. Participants were instructed

to ignore differences between speakers (i.e., in overall f0

range) as much as possible and only judge the melody of the

words (i.e., contour shape). This instruction did not guaran-

tee the desired auditory focus of participants, however, was

taken as the optimal way to draw attention to the contour

shape differences. Participants were further instructed to use

the entire scale to express their judgments. After instruc-

tions, participants completed a training round consisting of

five randomly chosen stimulus pairs. This training round

was meant to familiarize them with the experimental proce-

dure. During a pilot test without a training round, partici-

pants reported having difficulties judging different sounding

stimuli as to their degree of difference. That is, it was hard

for them to judge how different they were as they did not

have anything to compare the difference to. Only after hav-

ing heard multiple stimuli, this difficulty would decrease.

Thus, the training round ensured that participants had a real-

istic impression of the degree of possible differences

between the stimuli before starting the actual experiment.

After having received the instructions and having completed

the training round the actual experiment was done. The

experiment lasted on average 40 min, with PMY participants

taking longer (l¼ 54 min) than the DEU participants

(l¼ 26 min). The latter difference could be ascribed to the

experience participants had with doing experiments. That is,

the DEU participants all had experience in participating in

an experiment, whereas hardly any of the PMY participants

had done an experiment before.

C. Participants

All participants were native speakers of the language

without hearing problems. Although some of them spoke a

local variety of the language as well, all of them were fluent

in the standard language (PMY or DEU). Responses of par-

ticipants were discarded if they failed to identify any of the

FIG. 1. Nine contours as used in the

stimuli and produced by three different

speakers (rows; S, T, Y) in three over-

all shapes [columns; 1: (rise-)fall, 2:

level, 3: rising].

FIG. 2. Screen capture of the German version of the experiment with the

phrase “The word melodies are…,” two play buttons, a five-point scale with

the words “identical” and “different” on the left and right side of the scale,

respectively.
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pairs in which the stimuli were identical (PMY, 9; DEU, 8).

The judgments of these participants were considered unreli-

able. The remaining number of participants for analysis was

as follows. PMY, 32 (26 F/6 M), M age, 26, age range:

19–41; DEU, 33 (23 F/10 M), M age, 31, age range, 24–41.

D. Contour representations

Time-series f0 measures were taken from the contours

in the stimuli using 50 measurement points (i.e., every

10 ms). In this way, each f0 contour was represented by a

vector of 50 values. They were measured in Hertz and then

converted into four different f0 representations (Table II).

First, they were converted to ERB using the formula from

Glasberg and Moore (1990) given in Eq. (1). ERB is based

on a logarithmic scale and therefore accounts for pitch per-

ception across different f0 ranges. Second, standardisation/

z-normalisation [Eq. (2)] was applied following previous

work on intonation contour clustering (e.g., Levow, 2006;

Hirschberg and Rosenberg, 2007; Calhoun and Schweitzer,

2012; Dockum, 2017; Kaland, 2021a; Kaland et al., 2021b).

Standardisation was proposed specifically to account for

speaker differences in the production of lexical tones (Rose,

1987). Although the contours used in this study were

phrase-final ones of a non-tonal language, their duration

(0.5 s) matches the length of a word and standardisation

might therefore be a suitable method for the stimuli. The

input f0 values for standardisation were expressed in Hertz.

Third, octave-median rescaling from Eq. (3) was applied to

the Hertz values. This conversion was proposed to account

for speaker (range) differences whilst taking into account

the melodic nature of intonation (i.e., using octaves; De

Looze and Hirst, 2014). It was applied in previous clustering

research (Seeliger and Kaland, 2022). Note that for both

standardisation and octave-median rescaling, the central ten-

dency measures (mean, median, standard deviation) were

calculated on the basis of more than the three contours per

speaker (S, 17; T, 7; Y, 6) such that their estimates were

more representative for the speakers. These additional con-

tours used for estimation were also taken from phrase-final

bisyllabic words in the same corpus. Note that the Hertz

scale was chosen for standardisation and octave-median

rescaling as these methods were proposed for this scale spe-

cifically. Fourth, the first derivative Eq. (4) of the f0 contour

was taken from the time series values using the gradi-
ent() function from the R pracma package (Borchers,

2022). This method essentially computes the rate of change

between two successive points such that the resulting veloc-

ity curve is scale-invariant, i.e., it only expresses the shape

of the f0 movement, preserving range, direction, and slope

information. This representation was tested on f0 contours

in previous studies on Mandarin tone, outperforming a rep-

resentation by direct f0 values (Zhang, 2016; Gauthier et al.,
2007). In the current study, ERB values were chosen to

compute the first derivative, in order to match the velocity

curves with the logarithmic nature of pitch perception,

ERB f 0ERB ¼ 21:4� log 10ð0:00437�f 0Hzþ1Þ; (1)

Standardisationðz-normÞ f 0Std ¼
f 0Hz � f 0Hz

r
; (2)

Octave-median rescaling f 0OMe ¼ log 2
f 0Hz

~f0 Hz

 !
; (3)

First derivative rf ða1; anÞ

¼ @f

@x1

ða1;…; an

� �
;…;

@f

@xn

ða1;…; anÞ: (4)

E. Distance measures

Each of the contour representations were the input for the

computation of distance matrices using three distance mea-

sures; Euclidean distance (L2 norm), Pearson correlation and

dynamic time warping (DTW). The computations were carried

out in R (R Core Team, 2022) and R Studio (R Studio Team,

2022) using the package TSDist (Mori et al., 2016). Their

common formulas are given in the following, in which x and y
are the two time-series (vectors) of f0 values, q is the Pearson

correlation coefficient between x and y, and df/ is the average

accumulated deformation due to warping the time-indices of x
and y. As for Euclidian distance in Eq. (5), the square root of

the sum of the squares of the differences between x and y are

taken. This method is highly similar to the one based on

RMSD adopted in Hermes (1998) as successful quantifier of

perceived differences between f0 contours. Pearson correlation

[Eq. (6)] as applied here expresses the distance between x and

y on scale between 0 and 2, such that negative values are

avoided. Thus, strongly negative correlations end up close to

2, whereas strongly positive correlations end up close to 0. In

this way, all distance measures applied here share that identi-

cal contours are expressed using zero distance and that increas-

ing distance values reflect increasing dissimilarity. Dynamic

time warping [Eq. (7)] first remaps the time-axis of x and y (all

formulas in Giorgino, 2009). The deformation resulting from

this remapping (warping) that aligns x and y as close as possi-

ble is taken as the distance measure. Distances between

warped x and y are Euclidean distances. Without further con-

straining the maximum allowed path (window) of warping

(/), DTW is highly similar to Euclidean distance. Therefore,

in the current analysis the window constraint was set to 5

(measurement points), thus allowing a maximum of 650 ms

misalignment, which equals a maximum of 10% misalign-

ment given the total duration of the contours (0.5 s). The win-

dow calculation was done using the Sakoe–Chiba method

(Sakoe and Chiba, 1978), which was shown to outperform

other common uses of DTW on 85 different time-series data-

sets (Geler et al., 2019),

Euclidean dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxi � yiÞ2
s

; (5)

Pearson dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� qðx; yÞÞ

p
; (6)

Dynamic Time Warping dðx; yÞ ¼ min
/

df/ðx; yÞ: (7)
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Participants’ judgments on the five-point scale were

recorded as a value between 0 and 4, where 0 corresponded

to two contours judged as identical and 4 to two contours

judged as maximally dissimilar. The mean of these values

was computed for each stimulus pair and formed the input

values for a distance matrix, one for each language.

F. Data analysis

The distance matrix computation generated production-

based matrices (all combinations of the four contour represen-

tations and three distance measures, Table I, N¼ 12) and two

perception-based matrices (PMY and DEU). The crucial com-

parisons for the current study concern the ones between the

production-based ones on the one hand and the perception-

based ones on the other hand (2� 12). Nevertheless, correla-

tion coefficients were computed for all combinations of

distance matrices (N¼ 91) to further understand how they dif-

fer among each other. The correlation coefficient (Kendall s)

was chosen as a measure of similarity between the distances

matrices (Dietz, 1983) and testing was carried out using the

cor.test() function in R (R Core Team, 2022) for all

complete pairwise observations (36 pairs of values for each

comparison of two distance matrices). The resulting correla-

tion matrix thus consisted of 91 coefficients (see Sec. III).

III. RESULTS

The distances as computed for each stimulus pair

according to each tested method and their perceptual rating

are given in the Appendix. Before turning to a comparison

of the production-based distances and the perception-based

distances, they are briefly discussed separately one by one.

Among the production-based distances, some

combinations of contour representation and distance mea-

sure show a near perfect correlation (>0.97); ERB-Pq with

Standardisation-Pq and with OMe rescaling-Pq (Table IV).

Very strong correlations (>0.80) are found within each con-

tour representation between the distance measures

Euclidean distance and DTW. Across all tested combina-

tions, ERB-Pq, Standardisation-Pq, OMe-rescaling-Pq, and

First derivative-DTW show significant correlations with

most of the other production-based distances.

As for the perception-based distances, it can be seen

that Papuan Malay and German overall show equally low or

equally high similarity ratings for the contour pairs

(Appendix). Figure 3 shows the perceived distances in

graphs for each language. For example, contour pair #16

(S.3–T.1) and #36 (Y.2–Y.3) both show minimal differences

in rating across the languages (<0.01). Exceptions are con-

tour pair #14 (S.2–Y.2) and #24 (T.1–Y.1), which both

showed more than one point difference on the five-point rat-

ing scale. Some contour pair ratings varied less than others,

as can be seen from their standard deviations (SD). These

were unsurprisingly found at either end of the rating scale,

i.e., rated as highly similar or highly different contours,

respectively. For Papuan Malay, pair #3 (S.1–T-1) had the

smallest SD for a high similarity rating and pair #7

(S.1–Y.2) had the smallest SD for a highly different rating.

For German, pair #3 (S.1–T-1) had the smallest SD for a

high similarity rating and pair #12 (S.2–T.3) had the small-

est SD for a highly different rating. The largest SDs were

found for pair #30 (T.2–Y.3) for Papuan Malay and for pair

#14 (S.2-Y.2) for German. It furthermore becomes clear

from the Table IV that the perception ratings of both lan-

guages correlated moderately to strongly.

When comparing the perceived distances with the com-

puted (production-based) ones (Table IV), correlations are

mostly found to be moderate in strength. The strongest cor-

relations are found for Standardisation-DTW (PMY, 0.38;

DEU, 0.42) and First derivative-DTW (PMY, 037; DEU,

TABLE IV. Correlation coefficients (Kendall s) as calculated for all combinations of distance matrices. Coefficients for the perception-based matrices occur

in bold face when the correlation test had a p-value below 0.05.

ERB Standardisation OMe rescaling First derivative Perception

EU Pq DTW EU Pq DTW EU Pq DTW EU Pq DTW PMY DEU

ERB EU

Pq 0

DTW 0.90 �0.01

Standardisation EU 0.14 0.25 0.04

Pq 0.01 0.99 �0.01 0.26

DTW 0.12 0.29 0.07 0.87 0.30

OMe rescaling EU 0.09 0.27 0 0.86 0.28 0.79

Pq 0 0.99 �0.01 0.25 0.98 0.29 0.27

DTW 0.06 0.31 0 0.80 0.32 0.84 0.84 0.31

First derivative EU 0.13 0.24 0.05 0.77 0.25 0.74 0.71 0.24 0.66

Pq �0.02 0.47 �0.03 0.18 0.46 0.22 0.18 0.47 0.21 0.21

DTW 0.06 0.34 �0.02 0.72 0.35 0.66 0.71 0.34 0.63 0.80 0.27

Perception PMY 0.33 0.24 0.29 0.35 0.25 0.38 0.37 0.23 0.34 0.37 0.19 0.37

DEU 0.25 0.33 0.20 0.42 0.33 0.42 0.40 0.33 0.35 0.42 0.15 0.49 0.65
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0.49). Overall, weaker correlations were found for Papuan

Malay than for German. Across the languages (Table IV

bottom two rows only) and among the different contour rep-

resentations, standardisation always resulted in a significant

correlation. Among the different distance measures,

Euclidean distance and DTW tend to show stronger correla-

tions than Pearson q. In this respect, the contour representa-

tions standardisation and first derivative are highly similar

when taking into account only Euclidean distance and

DTW. OMe rescaling is similar to Standardisation and First

derivate in that it has the strongest correlations for

Euclidean distance and is different in that DTW correlations

are weaker. Contour representations in ERB led to the over-

all weakest correlations across languages and across dis-

tance measures. Pearson q applied to the first derivative

showed the lowest s values across the languages.

IV. DISCUSSION AND CONCLUSION

The aim of this study was to find the combination of

contour representation and distance measure that best cap-

tures perceived differences between intonation contours

across two languages. The results have shown that the

majority of the combinations work moderately well. The

strongest correlations between computed and perceived dis-

tance were found for DTW, when applied to either standard-

ized f0 values or the first derivative (RQ1). Although these

were the strongest correlations in numeric terms, their

strength generally did not differ much from the other con-

tour representations and distance measures. Standardisation

had the best result across distance measures and Pearson

correlation had the worst result when applied to the first

derivative. Thus, the outcomes rather indicate which combi-

nations should be avoided when performing cluster analysis

on f0 contours.

The results do not clearly indicate language differences

in the way the contour differences were perceived. The larg-

est difference between Papuan Malay and German percep-

tion was found for the first derivative-DTW (0.12). This

difference indicates that the first derivative-DTW better

reflects German contour difference perception than it does

for Papuan Malay. It is however unlikely that this difference

is a reflection of true linguistic differences, for two reasons.

First, the correlations were overall weaker for Papuan

Malay than for German. Second, since the contours were

taken from Papuan Malay data, a true linguistic difference

would likely have shown in the other direction; i.e., a per-

ceptual advantage of hearing intonation contrasts for the

Papuan Malay listeners as the contours were taken from

their language. In the context of overall moderate correla-

tions between production-based and perception-based simi-

larities, it is likely that true language differences did not

exist in the current setup. In addition, it should be noted that

the two contour pairs for which the largest language differ-

ences in the ratings were found, were similar in shape and

different in register (#14 and #24). The language difference

for both pairs was such that Papuan Malay listeners per-

ceived the contours are less similar than the German listen-

ers. The perception-based distances largely confirm the

original division of contours in terms of (rise-)fall, level,

and rise (cf. Table III and Fig. 3). The smallest perceived

distances were indeed found within these shape categories

across speakers and across languages, in particular (rise-)

falls (X.1) and rises (X.3). Speakers S and T (female) tend

to be perceived as more similar than each of them compared

to speaker Y (male), indicating that participants were not

entirely able to abstract over speaker gender. It should be

noted that some informal reports from participants indicated

a challenge they had with contour pairs that only differed in

register. Although they were explicitly instructed to not rate

differences between male and female voices, not all partici-

pants managed to do so equally well. In this respect, there was

a difference between the Papuan Malay and the German listen-

ers, in that participants from the latter group had more often a

background in linguistics and were therefore potentially better

able to focus on contour shape differences only, as potentially

reflected in shorter completion times (see Sec. II C).

Related to the difficulty of the task, it should also be

noted that none of the combinations of contour representa-

tions and distance measures was able to correlate more than

moderately with the perception ratings. Table IV indicates

that the best reflection of participants’ ratings were the ones

obtained from the other language, not from the computed

ones. It can be expected that the task difficulty participants

experienced or the decreased naturalness of the stimuli

FIG. 3. Perceived distances between all contours (see Fig. 1) by Papuan

Malay (top) and German (bottom) listeners. Visualization in a circular net-

work graph based on the distance matrix of perceptual scores (values in the

Appendix) for each language using qgraph package in R (Epskamp et al.,
2012). Thicker and darker lines correspond to smaller perceived distances.
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contributed to these results. Although the methodological

choices for the stimulus material were careful, it could not

be avoided that they deviated from natural speech percep-

tion. That is, listeners do generally not perceive speech in

stretches of the same length and intensity. Crucially, no

information content was present in any of the stimuli. These

factors are likely to reduce the correlation strength to some

extent. In addition, it could be the case that the production-

based distances are not optimal approximations of perceived

contour differences. More research is needed to fully under-

stand the perception of f0 and how they can be approxi-

mated by acoustic measures.

Despite the shortcomings of the current study, the

results provide a useful basis for the application of cluster

analysis to f0 contours. This is particularly true given the

lack of notable language differences, indicating that the

current experiments are likely to reflect a level of auditory

perception that is shared across languages (RQ2). The

results support the choices for standardisation and Euclidean

distance in a considerable number of previous studies (Table

I), as these methods were shown to be among the best-

performing ones in the current study. The results also show

that human perception is even better reflected in methods

that were less commonly applied. This holds in particular

for the first derivative as contour representation and DTW

as a distance measure. Their combination led to (one of) the

best results in both languages tested in this study. Only a

few studies applied these methods so far (DTW, Ra�skinis

and Kazlauskien _e, 2013; D1-DTW, Zhang, 2016) and the

current results indicate that they are worth applying in future

work. This outcome is not entirely surprising, given that

both methods are improved versions of others. That is,

TABLE V. *Numbered stimulus pair list showing all combinations of the nine contours (Table III and Fig. 1) and all distances between them as measured

by the different combination of contour representations (ERB, Standardisation, OMe rescaling, First derivative) and distance measures (EU, Pq, DTW), and

the mean perceived distances (with standard deviation) by PMY and German DEU listeners.

Pair
Contour ERB Standardisation OMe rescaling First derivative Perception

# A B EU Pq DTW EU Pq DTW EU Pq DTW EU Pq DTW PMY DEU

1 S.1 S.2 10.48 1.72 114.16 14.50 1.72 158.58 3.25 1.72 35.22 0.70 1.58 5.11 3.28 (1.14) 3.42 (0.83)

2 S.1 S.3 11.88 1.92 105.99 16.84 1.92 148.14 3.62 1.91 32.53 0.75 1.73 6.95 3.00 (1.32) 3.30 (1.13)

3 S.1 T.1 1.95 0.21 12.38 5.64 0.22 51.74 1.56 0.20 15.46 0.20 0.51 1.02 0.56 (0.95) 0.67 (0.74)

4 S.1 T.2 5.08 1.92 50.96 8.47 1.92 79.13 2.10 1.91 18.70 0.50 1.76 4.62 2.75 (1.32) 2.61 (1.25)

5 S.1 T.3 13.72 1.83 137.58 23.49 1.84 221.16 4.69 1.80 45.09 1.01 1.23 8.41 3.16 (1.30) 3.36 (0.90)

6 S.1 Y.1 17.82 0.40 230.86 2.10 0.41 8.81 0.56 0.38 2.10 0.31 0.91 1.70 1.72 (1.49) 0.82 (1.07)

7 S.1 Y.2 18.02 1.33 235.99 4.82 1.33 41.95 1.28 1.32 10.69 0.40 1.41 2.79 3.62 (0.83) 3.42 (0.97)

8 S.1 Y.3 15.33 1.86 191.76 10.54 1.86 94.23 2.76 1.85 24.94 0.55 1.70 4.99 2.38 (1.45) 2.48 (1.33)

9 S.2 S.3 6.15 1.12 50.66 9.05 1.13 74.25 1.81 1.11 14.88 0.55 0.89 4.08 2.72 (1.28) 2.94 (1.09)

10 S.2 T.1 8.65 1.67 96.33 9.90 1.66 86.97 1.79 1.67 15.99 0.59 1.51 3.99 3.09 (1.23) 3.33 (0.96)

11 S.2 T.2 8.59 0.95 104.86 9.08 0.97 99.35 1.62 0.93 17.76 0.49 1.17 2.75 2.50 (1.39) 1.79 (1.47)

12 S.2 T.3 15.83 1.31 151.57 23.64 1.28 222.35 4.88 1.35 42.59 1.03 1.32 8.12 3.34 (1.07) 3.61 (0.56)

13 S.2 Y.1 27.14 1.54 361.75 13.14 1.53 141.43 2.91 1.54 29.36 0.52 1.18 3.23 3.28 (1.22) 3.55 (0.83)

14 S.2 Y.2 26.94 1.65 366.33 12.33 1.65 150.70 2.54 1.65 31.09 0.59 1.66 2.79 3.28 (1.37) 1.97 (1.59)

15 S.2 Y.3 23.66 1.08 315.55 6.98 1.10 57.82 1.23 1.05 9.61 0.56 1.33 3.29 2.84 (1.48) 3.27 (1.04)

16 S.3 T.1 10.30 1.95 94.92 14.58 1.96 146.94 2.66 1.95 27.66 0.64 1.62 6.15 3.19 (1.28) 3.18 (1.10)

17 S.3 T.2 8.03 0.51 73.62 9.06 0.52 70.86 1.65 0.51 13.81 0.41 0.88 3.11 2.62 (1.45) 2.94 (1.03)

18 S.3 T.3 10.94 0.31 97.14 15.43 0.28 127.78 3.26 0.38 23.46 0.62 1.05 3.27 1.16 (1.27) 0.88 (0.89)

19 S.3 Y.1 26.12 1.85 334.91 15.58 1.86 131.42 3.36 1.85 28.25 0.62 1.31 5.22 3.34 (1.12) 3.55 (0.71)

20 S.3 Y.2 25.54 1.46 333.91 13.06 1.47 118.09 2.55 1.45 23.82 0.53 1.73 4.98 3.59 (1.04) 3.79 (0.74)

21 S.3 Y.3 22.00 0.64 283.14 7.44 0.67 51.85 1.24 0.63 8.90 0.46 1.07 3.15 2.69 (1.47) 2.91 (1.26)

22 T.1 T.2 3.98 1.92 45.48 7.64 1.92 87.45 1.29 1.92 14.63 0.35 1.65 2.69 2.41 (1.27) 3.12 (0.99)

23 T.1 T.3 13.46 1.89 134.45 24.78 1.90 249.42 4.79 1.86 46.28 0.98 1.16 7.96 3.53 (0.88) 3.64 (0.74)

24 T.1 Y.1 19.22 0.41 253.99 5.06 0.42 42.39 1.31 0.40 10.87 0.25 0.86 1.41 2.72 (1.61) 1.36 (1.29)

25 T.1 Y.2 19.28 1.34 259.94 6.67 1.35 69.21 1.38 1.34 13.52 0.27 1.31 1.62 3.41 (1.07) 3.15 (1.00)

26 T.1 Y.3 16.40 1.87 214.25 8.23 1.87 84.90 1.67 1.87 16.57 0.42 1.63 3.25 2.97 (1.33) 2.91 (1.16)

27 T.2 T.3 10.30 0.77 85.08 18.55 0.76 155.04 3.83 0.81 30.29 0.91 1.54 7.13 3.41 (1.04) 2.94 (1.12)

28 T.2 Y.1 18.86 1.81 249.46 7.19 1.81 57.71 1.85 1.81 14.50 0.40 1.46 3.35 2.84 (1.35) 3.00 (0.90)

29 T.2 Y.2 18.50 1.36 252.31 4.38 1.36 38.58 1.04 1.35 10.39 0.23 1.38 1.53 2.72 (1.35) 1.82 (1.38)

30 T.2 Y.3 15.17 0.25 199.60 3.01 0.25 17.47 0.77 0.24 4.37 0.13 0.39 0.55 1.78 (1.66) 1.97 (1.31)

31 T.3 Y.1 19.60 1.80 199.72 22.87 1.82 216.10 4.66 1.77 44.77 1.01 1.29 7.24 3.22 (1.10) 3.55 (0.79)

32 T.3 Y.2 18.58 1.43 193.72 20.05 1.46 170.26 3.88 1.39 32.86 0.93 1.68 7.54 3.34 (1.00) 3.48 (0.76)

33 T.3 Y.3 15.25 0.85 155.74 19.27 0.86 171.73 3.95 0.86 32.91 0.98 1.63 7.64 2.78 (1.39) 3.18 (0.88)

34 Y.1 Y.2 2.40 1.39 20.31 4.19 1.39 35.55 1.23 1.38 10.28 0.41 1.65 3.04 2.62 (1.29) 2.70 (1.16)

35 Y.1 Y.3 5.10 1.74 41.29 9.18 1.74 74.45 2.45 1.74 19.64 0.45 1.46 3.83 1.88 (1.50) 2.30 (1.47)

36 Y.2 Y.3 3.83 1.26 37.87 7.03 1.26 68.81 1.76 1.26 17.68 0.30 1.34 2.06 2.69 (1.45) 2.70 (1.19)
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taking the first derivative of an f0 contour automatically

abstracts over register differences without the need of calcu-

lating a speaker’s range first (as done in standardisation and

OMe rescaling). DTW is essentially Euclidean distance with

the added capability of allowing for misalignments in time.

In this regard it is interesting that Pearson correlation turned

out to be the least-performing distance measure. It appeared

that although this measure is able to abstract over register

differences it does not reflect the way listeners do this.

Pearson correlation was shown to perform best to express

contour differences among different representations of the

produced contours, most likely because they were variants

of each other based on the same set of f0 measures. To con-

clude, the current results showed that perceived contour dis-

tances are best expressed by Euclidean distance or DTW.

Now that some common contour representations and

distance measures are compared to human perception, the

next step is applying the outcomes to cluster analyses.

Given the variety of clustering techniques (Table I), future

work should compare them in the same structural way as

done in the current study. One way of doing so would be to

perform several clustering methods on the same dataset,

which has known groupings of data (see, e.g., Cole and

Steffman, 2021 for such a set of American English con-

tours). In this way, our understanding of contour clustering

and its potential implications for prosodic theory can be

improved. The current study shows that dynamic time warp-

ing on the first derivative of ERB converted f0 contours

would be a promising way to express the contour differences

in such a study.
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