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Abstract 
This paper aims to strengthen the link between acoustic and 
perceptual representations of intonation, a link that has been 
weakened by the over-reliance on the F0 trajectory, which can 
only be interpreted in relation to landmarks in the segmental 
string, placed manually or semi-automatically at a separate 
stage in the analysis. Only then can F0 events be identified as 
linguistically relevant (e.g. early, medial or late peaks, 
accentual tones or edge tones etc.). 

We provide an analysis and visualization of two acoustic 
dimensions contributing towards the perceived pitch contour, 
F0 over time and, crucially, periodic energy. Periodic energy 
reflects the degree to which pitch is intelligible, a higher value 
representing a stronger F0 signal that is consequently more 
easily perceived. A representation of F0 that includes periodic 
energy is thus able to flag portions of the speech signal that are 
relevant for the analysis of intonation, without the need for a 
separate segmentation of the signal into phones and syllables.  
Index Terms: intonation, pitch perception, periodic energy, 
tonal alignment, segmentation, data visualization, sonority 

1. Introduction 
While articulation and perception relate directly to the human 
capacity for speech, there is only an indirect relation to 
acoustics. Although research into intonation has involved 
numerous studies on perception (and very few on articulation), 
the main bulk of research has relied on acoustic data. The latter 
is easier to collect, maintain, process and quantify. This leap 
from acoustics to perception is plausible thanks to some well-
established correlations between acoustic and perceptual 
phenomena. For example, while it is relatively difficult to 
collect data on the perception of pitch, one can easily and quite 
reliably measure an established correlate of pitch from acoustic 
signals – the fundamental frequency (F0) [1,2]. 

This paper focuses on the acoustics-perception link in the 
phonetics and phonology of intonation. We use measurements 
of acoustic periodic energy to enrich standard F0 
representations with a view to gaining new insights informing 
our research methodologies. The goal of this paper is to 
demonstrate the advantages of these enriched representations in 
the analysis of intonation.  

2. Background 
The acoustic toolbox of most phonetic-phonological research 
has barely changed over the last few decades. Its main tools 
remain the products of the Fourier Transform, that measure 
acoustic power at different frequencies, alongside various 
techniques for F0 detection. In segmental phonology, which 
also enjoys a large body of articulatory-based research, the 

products of the standard Fourier Transform are usually deemed 
enough for a satisfying acoustic description. Measurements of 
acoustic energy at different frequencies over time, have thus far 
proven to be an effective way to measure the quality and 
quantity of most linguistically distinctive segmental 
phenomena (e.g. formant structure, spectral dispersion, 
transiency etc.). 

Since the study of intonation does not lend itself to 
straightforward articulatory investigation, it relies almost 
exclusively on perception, using mostly acoustic data in order 
to quantify and analyze prosodically distinctive phenomena. In 
intonation research, the F0 trajectory is perhaps the single most 
crucial acoustic dimension used in the description of any model. 
As such, it is surprisingly poor, consisting only of a single 
vector of continuous data reflecting the F0 value over time.  

In intonational phonology, F0 trajectories have to be 
mapped on to "meaningful" abstract categories, such as tones 
and tonal clusters (henceforth tonal events), serving to mark 
accents and boundaries. Locating the acoustic reflex of these 
tonal events is not a straight-forward task using a standard 
representation of F0. Trajectories are 2-dimensional (F0 over 
time) and binary in terms of strength/intensity (F0 data is either 
present or absent from the analysis at any time point). To enrich 
this binary aspect of F0 representation, researchers employ 
assumptions that refer to other phonological abstract entities, 
namely syllables and possibly segments. For example, it is 
widely assumed that pitch accents are associated with stressed 
syllables and that tonal information is more salient on vowels 
than on consonants (as well as more on sonorants than on 
obstruents). With current tools, we need these discrete 
segmental/syllabic landmarks to make sense of F0 trajectories 
and to analyze them in comparable ways (e.g. by using 
landmarks within or in the vicinity of stressed syllables as 
anchors for comparison of different accent types). 

An F0 trajectory without segmental landmarks is difficult 
to interpret. Changes in the shape of the trajectory can only be 
taken as indicative of tonal events if they can be identified as 
categories within the language under investigation. Much work 
within the Autosegmental-Metrical model [3,4] has been 
concerned with tune-text association, reflected in the 
synchronization between aspects of the F0 trajectory (usually 
turning points or elbows) and landmarks in the segmental string 
(in relation to stressed syllables or edges of constituents) 
obtained through a separate segmentation process.  

3. Current proposal 
Segmentation of speech data requires a separate process in 
which symbolic discrete entities are concatenated linearly, with 
no overlap. It is therefore a theoretically limiting and 
methodologically time-consuming process. A richer acoustic 
representation of F0 trajectories could highlight the salient 
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portions of F0 trajectory, with a potential for uncovering the 
relevant parts (i.e. tonal events), independently of any 
additional layer of segmentation. We report here on promising 
attempts to achieve this goal with the addition of periodic 
energy measurements to our acoustic analyses.  

Measurements of periodic energy may be understood as 
reflecting a certain dimension of acoustic intensity. Unlike 
general acoustic intensity, or any type of frequency-filtered 
intensity, periodic energy directly correlates with the strength 
of F0 [5,6], which is expected to be higher in intonationally 
relevant portions of the signal. Periodic energy is also an 
acoustic dimension with extreme importance for speech 
research, as it provides the medium for transmission of pitch 
events, modulating the relation between tune and text. Periodic 
energy trajectories tend to align their local peaks with the 
location of syllable nuclei, especially vowels. We exploit this 
tendency to automatically segment the speech data in 
accordance with the macro-fluctuations in the periodic energy 
curve, in a manner that resonates with previous uses of 
frequency-filtered intensity curves (see [7,8,9,10,11] for a few 
prominent examples). 

Incorporating periodic energy in analyses of F0 is 
motivated by general auditory perceptual and cognitive 
principles, according to which periodic energy correlates with 
pitch intelligibility [5,6]. There are also good linguistic 
motivations (even if more arguable) to incorporate periodic 
energy in phonological analyses, as periodic energy seems to 
correlate well with sonority [12,13], as well as with syllable-
sized units. 

Taken together, it should be possible to obtain analyses of 
F0 trajectories that reflect the relative strength of the tonal 
information, as it is transmitted by the underlying segmental 
makeup, yet in a continuous fashion, independently of any prior 
annotation of segmental and syllabic landmarks. Furthermore, 
the periodic energy trajectory should be capable of segmenting 
the speech stream into units that are comparable to the 
underlying sequence of syllables. 

4. Pre-processing 
We obtain continuous measurements of periodic energy using 
the APP Detector, a computer code that was introduced in [14] 
and developed in subsequent publications up to 2008 [15,16], 
with the ability to measure periodic energy in audio signals. In 
what follows we describe how we use these periodic energy 
measurements alongside more typical acoustic speech data 
obtained from Praat [17]. The end result at this stage requires 
the combination of data from different sources in order to 
display, calculate and analyze interactions between acoustic 
data types. Furthermore, an ad-hoc patch was required in this 
task to compensate for some technical problems that we 
encountered with the specific set of tools at our disposal (see 
4.3). It is therefore important to view this work not as a finished 
product, but, rather, as a preliminary demonstration of 
possibilities that await better technological solutions. In the 
current paper we combine all data within R [18] where data 
manipulation, visualization, quantization and statistics are all 
extensively supported, easily accessible and freely available.  

4.1. The APP detector 

The APP Detector is capable of measuring (among other things) 
a spectral distribution of periodic energy, i.e. the amount of 
periodic energy at different frequency rates over time. Although 

the typical spectral range for human hearing is between approx. 
20 and 20,000 Hz, our pitch perception range is limited to 
periods between approx. 30 and 4,000 Hz [19,20,21]. The 
typical range of F0 in speech is well within that range, in a 
pitch-privileged bandwidth between approx. 50 and 600 Hz. 
We therefore sum over the different frequencies that the APP 
Detector measures to obtain one vector of the sum of periodic 
energy (over different frequencies) at each time point, under the 
assumption that different pitch heights are equally intelligible 
within the typical human speech range (male–female, young–
old). This sum of periodic energy is log transformed and 
divided by a value that corresponds to energy beyond the 
threshold of effective pitch transmission, much like in the 
standard equation for dB SPL, where the log variable is divided 
by a constant which represents the threshold of hearing, thus 
obtaining a meaningful zero. To obtain this value and adjust the 
floor of the periodic energy vector we measure purely voiceless 
portions and set the maximal periodic energy value of those 
voiceless portions as the constant floor denominator of the log 
variable.  

4.2. Specialized Praat programs 

We use mausmooth [22] to extract manually inspected and 
automatically smoothed and interpolated F0 trajectories using 
Praat. We also use Prosogram [23] to extract the corresponding 
band-pass filtered intensity data from Praat. Text-grid 
annotations with segmental and/or syllabic data are also readily 
incorporated within the same data frame in R.  

4.3. Pitch-patch 

A quick survey of speech data revealed one major systematic 
problem with the measurements of periodic energy that we 
obtained from the APP Detector. Whenever there is a relatively 
sharp F0 change over time, which is often the case in accented 
portions of speech, the periodic energy curve drops and appears 
as irregularly low when it is actually expected to be higher than 
average. We concluded that the APP Detector fails to reliably 
detect periodic energy when the rate of change in the length of 
periods exceeds a certain threshold. To overcome this problem 
in an ad-hoc manner we designed a patch by computing the 
growth rate (or first derivative) of the F0 curve. This new data 
vector was designed to operate at around the same time points 
and velocity thresholds in which the APP Detector fails, thus 
adding back the missing parts to the periodic energy curve, 
based on the amount of change in F0 (see Figure 1). To further 
control this measurement of F0 growth rate we multiplied its 
values by the corresponding values of the general intensity 
curve. Thus, the growth rate of the F0 curve is limited by the 
general intensity level of the signal (so, for example, the growth 
rate of a sharp rise in F0 will be diminished when the intensity 
curve is at the same time falling, but it will be enhanced if 
intensity is at the same time rising). Clearly, this patch is not 
desirable, but given its relative success and the rationale behind 
it, we believe that future periodic energy detectors will be able 
to dramatically improve on that. 
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Figure 1: Raw periodic energy data (gray) results in 
fixed and smoothed curve (purple), augmented by the 
controlled growth-rate levels (red), based on changes 

in the F0 curve (blue). 

Examples in Figures 1-3 are taken from elicited speech for 
intonation research in Italian. All figures exhibit the sentence 
Danilo vola da Roma ('Danilo flies from Rome'). Figures 1-2 
feature an object-focus interrogative (main accent on RO-ma), 
while Figure 3 features a subject-focus interrogative (accent on 
da-NI-lo). 

4.4. Smoothing and cycling 

Finally, we fit a LOESS smooth [24] to the adjusted 
combination of periodic energy and the F0 growth-rate patch. 
The resulting final smoothed periodic energy curve is now 
informative in various ways. It typically exhibits a sequence of 
fluctuations with local minima (onsets and offsets) and peak 
points between them. We refer to each interval between two 
local minima as a periodic cycle. In clear careful speech, each 
local peak along the periodic energy curve aligns with a 
sonority peak, most often associated with an underlying vowel 
which would also be considered the syllabic nucleus. This 1:1 
mapping between periodic cycles and syllables becomes fuzzier 
with spontaneous rapid speech, as even whole syllables often 
undergo a phonological reduction [25,26]. In such cases, one 
periodic cycle may include more than one underlying syllable.  

Given the low resolution of the periodic energy 
measurements at 10 ms intervals, there is a notable trade-off 
between amounts of smoothing and periodic cycle detection. If 
not sufficiently smoothed, transient fluctuations along the 
periodic energy curve may appear as local peaks, resulting in 
cases where there is more than one periodic cycle for one 
underlying syllable. Smoothing too much, on the other hand, 
results in more cases where 2 syllables are collapsed into one 
periodic cycle. We tend to prefer the latter result when adjusting 
the smoothing parameters, as it is, indeed, reflective of natural 
reduction processes, while the former result is more reflective 
of the technical shortcomings of the machinery. Once again, we 
believe that future periodic energy detectors could allow much 
higher resolutions that would reduce the need for smoothing 
while at the same time increase the reliability of cycle detection. 

4.5. Periodic energy masses and their center 

With periodic cycles that are generally equivalent to syllables 
in size, it is possible to measure the duration and overall 
intensity of each periodic cycle, as is standard in prosodic 
research. However, this results in 2 mutually exclusive values 
that are only partially sensitive to the tonal cycle — duration is 

completely indifferent to the acoustic content and while (band-
pass) intensity roughly correlates with periodic energy, it lumps 
together periodic and aperiodic components of speech, making 
it less reliable for the task. Once a periodic energy vector is 
available, it is possible to measure the area under the curve of 
periodic energy. This gives one value which is the sum integral 
of the duration and intensity of the periodic component of the 
cycle. We refer to this type of measure as periodic energy mass, 
which we interpret as reflecting the relative strength of each 
periodic cycle. 

 

Figure 2: Periodic cycles (purple curve), their center 
of mass (yellow dashed vertical line), their boundaries 

(blue vertical lines) and corresponding manual 
segmentation (black dotted vertical lines). 

Periodic cycles have one peak, typically around the middle of 
the cycle. We also calculate the center of mass (often referred 
to as center of gravity in the phonetics literature) of the periodic 
energy curve within each cycle. This enables us to calculate the 
average time point within cycles, weighted by periodic energy, 
as in (1), 

 	"#$%	&%%
	"#$%%

 (1) 

where we sum over the product of periodic energy (per) and 
time (t) at each time point (i), and divide that by the sum of 
periodic energy at those same time points.   

The center of mass takes the shape of the periodic energy 
curve into account as it finds the point of equilibrium, rather 
than simply locating the peak within each cycle. It is therefore 
a good estimate for the perceptual tonal focal point. 

It is also possible to obtain the weighted average F0 for each 
periodic cycle, using periodic energy as weights, in a similar 
procedure to the one used to find the center of mass in the time 
domain. We simply replace time values with F0 values, as in 
(2) below.  

 	"#$%	'(%%
	"#$%%

 (2) 

5. F0 representations 
Periodic energy is extremely useful when analyzed in 
conjunction with F0. F0 alone reflects pitch height, while 
periodic energy estimates the strength of the signal producing 
the F0 (reflecting pitch intelligibility). Together, they can be 
used to achieve richer and more informative visual 
representations as well as novel quantification possibilities of 
F0 trajectories. 
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5.1. F0 data visualization: Periograms 

We plot the F0 curve in R using ggplot [27]. As in the standard 
case, time is on the x-axis and F0 is on the y-axis of the 2-
dimensional representation. In a similar way to a spectrogram 
display, we add a third dimension that reflects the strength of 
each F0 time point within the x,y matrix. We do this by letting 
the periodic energy vector control two variables of the line 
appearance in ggplot — transparency and width (via 'alpha' and 
'size' variables). The resulting 3-dimensional representation 
displays an F0 curve with dynamically changing width and 
transparency. It is wide and solid at the most periodic portions 
and it becomes gradually narrower and more transparent as 
periodic energy drops. In portions that have zero periodicity, 
nothing will be displayed, even though the derived F0 data is 
continuous, having undergone mausmooth interpolation. We 
refer to this type of F0 display as a periogram. Periograms are 
information-rich alternatives for visual inspection of F0 data. 

 

 

Figure 3: Binary F0 display with manual segmentation 
(top) vs. periogram F0 display with annotated 

syllables at the center of mass locations (bottom). 

6. Discussion 

6.1. Periodic energy and phonetic representations 

Periodic energy can thus be used to enrich phonetic 
representations, as in the case of periograms. By modulating F0 
trajectories with periodic energy, the periogram integrates the 
relevant acoustic cues into a perceptually motivated 
representation of the pitch contour of an utterance. Compared 
with the F0 trajectories traditionally employed in intonation 
research, periograms offer both a methodological and a 
theoretical advantage: 

(i) Minima (and maxima) in the periodic energy function 
are indices of boundaries (and peaks) of periodic cycles. 

Periograms thus provide an automatic segmentation of the 
speech stream into syllable-sized units, thus removing the need 
for time-consuming segmental annotation, and yielding a 
significant methodological benefit. In this respect, it builds on 
earlier work on automatic syllabification [10,11,23] but 
focusses on periodic energy (rather than frequency-filtered 
intensity curves) as the main cue to syllabicity. 

(ii) From a theoretical point of view, by integrating 
information on the dynamics of both F0 and periodic energy, 
periograms offer a representation of the acoustic signal which 
is richer and more informative than traditional F0 trajectories. 
Periograms thus further the line of work on perceptually-based 
pitch contours by providing a representation which is 
continuous in nature, and thus allows (but does not require) 
categorical accounts such as the use of glissando thresholds for 
the distinction between level vs. dynamic tones [23,28,29].  

6.2. Quantification and application 

In the previous sections we showed how intonation research can 
benefit from richer phonetic representations by focussing on the 
visual representation of pitch contours. While acoustically-
rich, perceptually-motivated and graphically-intuitive pitch 
representations might already be seen as an improvement on the 
techniques currently in use, we also plan to use periograms for 
quantitative analyses and hypothesis testing. 

Notably, by providing a representation of pitch that is based 
on two vectors (F0 and periodic energy) for separate periodic 
cycles, periograms contain all the information needed to model 
phonetic differences between tonal events, without the need for 
further data annotation. In most work carried out within the 
autosegmental-metrical approach, the establishment of an 
inventory of tonal events starts with a characterisation of 
phonetic differences in F0 trajectories. For example, two 
different pitch accents might be described as showing 
differences in tonal alignment: given two different rising-falling 
accents, an F0 peak aligned early in the syllable triggers the 
perception of a falling accent, while an F0 peak aligned late in 
the syllable triggers the perception of a rising accent. This 
approach thus requires prior detection both of syllable 
boundaries and of tonal targets. These are two non-trivial 
operations, especially when working on tonal targets other than 
F0 peaks (viz. troughs or elbows), on casual speech (for which 
segmentation poses additional challenges) or on understudied 
languages (for which annotators and forced alignment tools are 
not readily available).  

Crucially, these two operations (syllable segmentation and 
target location) are not required in a periogram analysis. The 
differences in tonal alignment mentioned above would surface 
here as distinct movements (rising vs. falling) in the region of 
sufficiently high periodic energy within a given periodic cycle. 
For example, the second syllable of Danilo (proper name) in 
Figure 3 is clearly rising in its strongest portion. This is 
consistent with what we know from phonetics (the alignment of 
F0 peak is late in the syllable in questions) and from 
autosegmental-metrical phonology (questions have rising 
L*+H accents) [30]. The periogram illustrates this very clearly 
without the need to perform any segmental annotation.  
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